
 Ravi Krishna Tejaswi Duttaluru
2656812

EEC-693/793 - COMPUTER VISION DEPTH CAMERA

Spring 2017

Challenge Task Report

Lecture 6:

Write a program to sort number of elements in an array using a one-
dimensional array. The input of elements should be taken during run time.

Source File: ChallengeTaskArrays

A C# program is written using Console Application in Visual Studio. A for loop has
been implemented for 5 variables. The variables are sorted using a temporary
variable. The output of the code is shown below.

Lecture 7:

Modify the Depth Cam app such that the gray-scale depth image is changed to
a color image, where the color indicates the depth band, for example, red
denotes a distance from 3.5m to 4m, orange for 3.0m to 3.5m, etc.

Source File: ChallengeTaskDepthCam

The depth of the image is found out using a method named image1_Mousedown. In
this method, the co-ordinates of the point where we click the mouse are recorded and
the depth at that point is calculated. The depth at the given point is calculated using
the depth frame pixels. In this code, the maximum depth declared is 4000mm and
the minimum depth declared is 800mm. Moreover the co-ordinates where the mouse
is pointed are also displayed in TextBoxes in the output window. The C# code given
for designing the basic Depth Cam app is modified and a method named
GeneratedColorBytes is added to convert the gray-scale depth image to a color
image.

The colors indicated in the method are Red, Green, Pink, Yellow and Blue. If the
depth is less than 1.0m(1000mm), the color indicated is Red. If the depth is more
than 1.0m(1000mm) and less than 1.5m(1500mm), the color indicated is Green. If
the depth is more than 1.5m(1500mm) and less than 2.0m(2000mm), the color
indicated is Pink. If the depth is more than 2.0m(2000mm) and less than
2.5m(2500mm), the color indicated is Light Green. If the depth is more than

2.5m(2500mm) and less than 3.0m(3000mm), the color indicated is Yellow. If the
depth is more than 3.0m(3000mm), the color indicated is Blue. The outputs of the
code are shown below.

Lecture 8:

Modify the Tracking Hand project to make it a drawing app

o Shows all traces of the hand movement
o Add button to clear traces to make a new drawing
o Add a small palette chooser for change the color of the drawing point (an

Ellipse)
o Note that you must add code such that the button/palette is

pushed/selected using the gesture.

Source File: ChallengeTaskPaintApp

A C# code is written and the methods skeletonframeready,
MapJointsWithUIElements, scaleposition are added. An integer is declared as
ch=0which is used to represent our choice of colors. If ch=1, the color to be chosen

is Red. If ch=2, the color to be chosen is Green and so on. Four ellipses are taken in
the canvas and the colors are Red, Green, Blue and Yellow. A button is considered
for clearing the canvas. The co-ordinates for these four ellipses and the clear button
are recorded. When the code is being run, the left hand position will be moving.
When the left hand position reaches the exact co-ordinates of a color or the erase
button, the canvas either changes the color or it gets cleared when the co-ordinates
of the erase button are matched. The command we use for clearing canvas is

Canvas.Children.Clear();

But, in my code, I renamed the canvas as paintapp. So my command is modified as

Paintapp.Children.Clear():

The output of the code is shown below.

Lecture 9:

Modify the Tracking Skeleton project so that you can measure the angle formed
between left/right arm and torso.

o Draw an arc between the arm and torso.
o Display the angle value with a textbox on top of the arc.

Source File: ChallengeTaskHandAngle

The angle between the spine and the elbow is found out in this code. For that 3
vectors are taken at right elbow, hip and right shoulder. Now the distances between
(right shoulder and hip) and (right shoulder and right elbow) are calculated and noted
as vectors b1 and b2. Now the angle is found out between b1 and b2. That gives the
angle between right hand and torso. The angle found out with this formula is
displayed in a textbox. As per the requirement, the textbox is supposed to be
dynamic. In order to make it dynamic, these two lines are added to the code.

Canvas.SetLeft(textblock, handPt.X + 20);
Canvas.SetTop(textblock, handPt.Y + 20);

The output of the code is shown below.

Lecture 12:

Improve the DrawShapeFromSpeech project in the following ways:
o Enable both color image and skeleton data streams
o Display color image frames (but not the skeleton)
o Modify the grammar such that you can add a particular shape to a

particular joint location
E.g., draw a red circle at the right hand

o Enable drawing by right (or left) hand, using the color and shape you
specified in voice command

Source File: ChallengeTaskDrawShapeFromSpeech

For this project, first the Speech references are added along with the Kinect
references to enable the audio stream array. In the code we consider different shapes,
colors and joints. The grammar of the code is explained below. First of all, I have
split the command into four words. The first word is “Draw” which is constant. The
second word is a color object. Here a color within the declared colors is said. The
third word is a shape string. Here we say a desired shape within the declared shapes.
The fourth word is a joint. I have declared three joints for my code. They are Head,
Left Hand and Right Hand. Finally, it recognizes the four words and produces the
outputs. For displaying the image without the skeleton, we have to super impose the
image frame over the canvas frame with same resolution of 640X480 and same
positioning of both frames. The outputs of the code are shown below.

Command: Draw yellow square righthand.

Command: Draw blue circle lefthand.

Lecture 13:

Improve the basic Unity project (for object rotation and translation) in the
following ways:

o Add boundary check programmably for the game object when it reaches
the boundary of the game view.

o Change direction of the movement for the game object programmably
each time it reaches the boundary so that the game object bounces back
and forth between the boundaries of the game view.

Source File: ChallengeTaskCube

The view of the Main Camera is changed from Perspective view to Orthographic
view and the size is set to 4. The view of the camera is adjusted such that the view
acts as boundaries.

A sphere is added to the game view. A sphere collider and a rigid body is added to
the inspector of the sphere. Make sure to add a Bouncy material in the sphere
collider. Make sure to uncheck the ‘Use Gravity’ button in the rigid body. This is to
be done because as per rules of gravity, a ball cannot bounce back without hitting a
surface and the bouncing property is not same for all the materials. So, when we

uncheck the gravity, the movement speed and bouncing of the ball completely
depends on the code we added to the sphere.

A C# script is added to the sphere. In the script, a Boolean variable is declared which
is used to verify the conditions for rotation, translation and position. In the code, the
positions of x, y and z coordinates are modified with respect to time. The position of
the sphere is give in both positive and negative axes. The outputs of the code are
shown below.

Lecture 15:

Improve the Gesture Recognition Project in the following ways:

o Add recognition of two more gestures: (1) Right hand is raised;
 (2) Left hand is raised
o Add the GestureRecognitionEngine.cs to a Unity + Kinect app, and add

visual feedback on the gestures recognized.

Source File: ChallengeTaskGestureRecognition

In this project, the given C# code is modified. In this code, a skeleton is displayed
and its movements are tracked by the Kinect sensor. Whenever a joint is moved, it
detects the movement of the joints and displays it in the Output window. So, when
the right elbow and right wrist are raised up, it shows “Right Hand Raised”. If the
left wrist and left elbow are raised, it displays “Left Hand Raised”. If the left wrist
and right wrist are joined together, it detects that you are clapping your hands by
joining your two wrists and the message is displayed as “Hands Clapping”. If all the
right elbow, right wrist, left elbow, left wrist are raised, it detects the movement of
all four joints and displays “Two Hands Raised” in the TextBox.

The basic code given in the lecture has two gestures pre-defined. They are “Two
Hands Raised” and “Hands Clapping”. Two more gestures are added to the given
code. They are “Right Hand Raise” and “Left Hand Raise”. The code for adding
right hand raise and left hand raise gestures is shown below.

case GestureType.RightHandRaised:
 this.MatchRightHandRaisedGesture(this.Skeleton);
 break;

case GestureType.LeftHandRaised:
 this.MatchLeftHandRaisedGesture(this.Skeleton);

 break;

The outputs of the code are shown below.

